skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Gaojun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Speleothem δ18O records from central southern China have long been regarded as a key benchmark for Asian summer monsoon intensity. However, the similar δ18O minima observed among precession minima and their link to seasonal precipitation mixing remains unclear. Here, we present a 400,000-y record of summer precipitation δ18O from loess microcodium, which captures distinct precession cycles similar to those seen in speleothem δ18O records, particularly during glacial periods. Notably, our microcodium δ18O record reveals very low-δ18O values during precession minima at peak interglacials, a feature absent in speleothem δ18O records from central southern China. This discrepancy suggests that the mixed summer and nonsummer climatic signals substantially influence the speleothem δ18O records from central southern China. Proxy-model comparisons indicate that the lack of very low-δ18O values in speleothem δ18O records is due to an attenuated summer signal contribution, resulting from a lower summer-to-annual precipitation ratio in southern China at strong monsoon intervals. Our findings offer a potential explanation for the long-standing puzzle of the absence of 100- and 41-kyr cycles in speleothem δ18O records and underscore the critical role of seasonality in interpreting paleoclimatic proxies in central southern China. These insights also have broader implications for interpreting speleothem δ18O records globally, advocating for a more multiseason interpretive framework. 
    more » « less
  2. The evolution of oxygen cycles on Earth’s surface has been regulated by the balance between molecular oxygen production and consumption. The Neoproterozoic–Paleozoic transition likely marks the second rise in atmospheric and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disputed how marine organic carbon production and burial respond to global environmental changes and whether these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and elemental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma, likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeochemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earliest Paleozoic oceans. 
    more » « less
  3. Fly ash—the residuum of coal burning—contains a considerable amount of fossilized particulate organic carbon (FOC ash ) that remains after high-temperature combustion. Fly ash leaks into natural environments and participates in the contemporary carbon cycle, but its reactivity and flux remained poorly understood. We characterized FOC ash in the Chang Jiang (Yangtze River) basin, China, and quantified the riverine FOC ash fluxes. Using Raman spectral analysis, ramped pyrolysis oxidation, and chemical oxidation, we found that FOC ash is highly recalcitrant and unreactive, whereas shale-derived FOC (FOC rock ) was much more labile and easily oxidized. By combining mass balance calculations and other estimates of fly ash input to rivers, we estimated that the flux of FOC ash carried by the Chang Jiang was 0.21 to 0.42 Mt C⋅y −1 in 2007 to 2008—an amount equivalent to 37 to 72% of the total riverine FOC export. We attributed such high flux to the combination of increasing coal combustion that enhances FOC ash production and the massive construction of dams in the basin that reduces the flux of FOC rock eroded from upstream mountainous areas. Using global ash data, a first-order estimate suggests that FOC ash makes up to 16% of the present-day global riverine FOC flux to the oceans. This reflects a substantial impact of anthropogenic activities on the fluxes and burial of fossil organic carbon that has been made less reactive than the rocks from which it was derived. 
    more » « less